Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then
inequality is satisfied by exactly two integral values of $y$
inequality is satisfied by all values of $y \in (-4, 2)$
Roots of the equation are of same sign
${x^2} + \alpha x + \beta > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$
Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ , and $\alpha < \beta $. Then $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to
Leela and Madan pooled their music $CD's$ and sold them. They got as many rupees for each $CD$ as the total number of $CD's$ they sold. They share the money as follows: Leela first takes $10$ rupees, then Madan takes $10$ rupees and they continue taking $10$ rupees alternately till Madan is left out with less than $10$ rupees to take. Find the amount that is left out for Madan at the end, with justification.
If ${\log _2}x + {\log _x}2 = \frac{{10}}{3} = {\log _2}y + {\log _y}2$ and $x \ne y,$ then $x + y = $
If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is